MAYBE 8.82
H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:
↳ HASKELL
  ↳ IFR
mainModule Main
|  | ((realToFrac :: Real a => a  ->  Float) :: Real a => a  ->  Float) | 
module Main where
If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero
is transformed to
| primDivNatS0 | x y True | = Succ (primDivNatS (primMinusNatS x y) (Succ y)) | 
| primDivNatS0 | x y False | = Zero | 
The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x
is transformed to
| primModNatS0 | x y True | = primModNatS (primMinusNatS x y) (Succ y) | 
| primModNatS0 | x y False | = Succ x | 
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
mainModule Main
|  | ((realToFrac :: Real a => a  ->  Float) :: Real a => a  ->  Float) | 
module Main where
Replaced joker patterns by fresh variables and removed binding patterns.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
mainModule Main
|  | ((realToFrac :: Real a => a  ->  Float) :: Real a => a  ->  Float) | 
module Main where
Cond Reductions:
The following Function with conditions
| gcd' | x 0 | = x | 
| gcd' | x y | = gcd' y (x `rem` y) | 
is transformed to
| gcd' | x xz | = gcd'2 x xz | 
| gcd' | x y | = gcd'0 x y | 
| gcd'0 | x y | = gcd' y (x `rem` y) | 
| gcd'1 | True x xz | = x | 
| gcd'1 | yu yv yw | = gcd'0 yv yw | 
| gcd'2 | x xz | = gcd'1 (xz == 0) x xz | 
| gcd'2 | yx yy | = gcd'0 yx yy | 
The following Function with conditions
| gcd | 0 0 | = error [] | 
| gcd | x y | = 
| gcd' (abs x) (abs y) | | where | 
| gcd' | x 0 | = x |  | gcd' | x y | = gcd' y (x `rem` y) |  |  | 
is transformed to
| gcd | yz zu | = gcd3 yz zu | 
| gcd | x y | = gcd0 x y | 
| gcd0 | x y | = 
| gcd' (abs x) (abs y) | | where | 
| gcd' | x xz | = gcd'2 x xz |  | gcd' | x y | = gcd'0 x y |  |  |  | 
| gcd'0 | x y | = gcd' y (x `rem` y) |  |  |  | 
| gcd'1 | True x xz | = x |  | gcd'1 | yu yv yw | = gcd'0 yv yw |  |  |  | 
| gcd'2 | x xz | = gcd'1 (xz == 0) x xz |  | gcd'2 | yx yy | = gcd'0 yx yy |  |  | 
| gcd1 | True yz zu | = error [] | 
| gcd1 | zv zw zx | = gcd0 zw zx | 
| gcd2 | True yz zu | = gcd1 (zu == 0) yz zu | 
| gcd2 | zy zz vuu | = gcd0 zz vuu | 
| gcd3 | yz zu | = gcd2 (yz == 0) yz zu | 
| gcd3 | vuv vuw | = gcd0 vuv vuw | 
The following Function with conditions
is transformed to
| absReal0 | x True | = `negate` x | 
| absReal1 | x True | = x | 
| absReal1 | x False | = absReal0 x otherwise | 
| absReal2 | x | = absReal1 x (x >= 0) | 
The following Function with conditions
is transformed to
| undefined0 | True | = undefined | 
| undefined1 |  | = undefined0 False | 
The following Function with conditions
| reduce | x y | 
| 
| | | y == 0 |  |  | | | otherwise | 
| = | x `quot` d :% (y `quot` d) |  |  | | where |  |  | 
is transformed to
| reduce2 | x y | = 
| reduce1 x y (y == 0) | | where |  |  |  | 
| reduce0 | x y True | = x `quot` d :% (y `quot` d) |  |  |  | 
| reduce1 | x y True | = error [] |  | reduce1 | x y False | = reduce0 x y otherwise |  |  | 
The following Function with conditions
| signumReal | x | 
| | | x == 0 |  |  | | | x > 0 |  |  | | | otherwise |  |  | 
is transformed to
| signumReal | x | = signumReal3 x | 
| signumReal2 | x True | = 0 | 
| signumReal2 | x False | = signumReal1 x (x > 0) | 
| signumReal1 | x True | = 1 | 
| signumReal1 | x False | = signumReal0 x otherwise | 
| signumReal3 | x | = signumReal2 x (x == 0) | 
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
mainModule Main
|  | ((realToFrac :: Real a => a  ->  Float) :: Real a => a  ->  Float) | 
module Main where
Let/Where Reductions:
The bindings of the following Let/Where expression
| reduce1 x y (y == 0) | | where |  | 
|  | 
| reduce0 | x y True | = x `quot` d :% (y `quot` d) |  | 
|  | 
| reduce1 | x y True | = error [] |  | reduce1 | x y False | = reduce0 x y otherwise |  | 
are unpacked to the following functions on top level
| reduce2Reduce0 | vux vuy x y True | = x `quot` reduce2D vux vuy :% (y `quot` reduce2D vux vuy) | 
| reduce2D | vux vuy | = gcd vux vuy | 
| reduce2Reduce1 | vux vuy x y True | = error [] | 
| reduce2Reduce1 | vux vuy x y False | = reduce2Reduce0 vux vuy x y otherwise | 
The bindings of the following Let/Where expression
| gcd' (abs x) (abs y) | | where | 
| gcd' | x xz | = gcd'2 x xz |  | gcd' | x y | = gcd'0 x y |  | 
|  | 
| gcd'0 | x y | = gcd' y (x `rem` y) |  | 
|  | 
| gcd'1 | True x xz | = x |  | gcd'1 | yu yv yw | = gcd'0 yv yw |  | 
|  | 
| gcd'2 | x xz | = gcd'1 (xz == 0) x xz |  | gcd'2 | yx yy | = gcd'0 yx yy |  | 
are unpacked to the following functions on top level
| gcd0Gcd'1 | True x xz | = x | 
| gcd0Gcd'1 | yu yv yw | = gcd0Gcd'0 yv yw | 
| gcd0Gcd'0 | x y | = gcd0Gcd' y (x `rem` y) | 
| gcd0Gcd' | x xz | = gcd0Gcd'2 x xz | 
| gcd0Gcd' | x y | = gcd0Gcd'0 x y | 
| gcd0Gcd'2 | x xz | = gcd0Gcd'1 (xz == 0) x xz | 
| gcd0Gcd'2 | yx yy | = gcd0Gcd'0 yx yy | 
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
mainModule Main
|  | ((realToFrac :: Real a => a  ->  Float) :: Real a => a  ->  Float) | 
module Main where
Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                      ↳ Narrow
mainModule Main
|  | (realToFrac :: Real a => a  ->  Float) | 
module Main where
Haskell To QDPs
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primMulNat(Succ(vuz30000)) → new_primMulNat(vuz30000)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primMulNat(Succ(vuz30000)) → new_primMulNat(vuz30000)
 The graph contains the following edges 1 > 1
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primMinusNatS(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS(vuz12700, vuz1280)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primMinusNatS(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS(vuz12700, vuz1280)
 The graph contains the following edges 1 > 1, 2 > 2
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
new_primDivNatS(Succ(Succ(vuz4500)), Zero) → new_primDivNatS(new_primMinusNatS0(vuz4500), Zero)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
new_primDivNatS(Succ(Zero), Zero) → new_primDivNatS(new_primMinusNatS1, Zero)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
new_primMinusNatS1 → Zero
new_primMinusNatS0(vuz4500) → Succ(vuz4500)
The set Q consists of the following terms:
new_primMinusNatS0(x0)
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS1
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS(Succ(Succ(vuz4500)), Zero) → new_primDivNatS(new_primMinusNatS0(vuz4500), Zero)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
new_primMinusNatS1 → Zero
new_primMinusNatS0(vuz4500) → Succ(vuz4500)
The set Q consists of the following terms:
new_primMinusNatS0(x0)
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS1
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS(Succ(Succ(vuz4500)), Zero) → new_primDivNatS(new_primMinusNatS0(vuz4500), Zero)
The TRS R consists of the following rules:
new_primMinusNatS0(vuz4500) → Succ(vuz4500)
The set Q consists of the following terms:
new_primMinusNatS0(x0)
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS1
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS1
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ RuleRemovalProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS(Succ(Succ(vuz4500)), Zero) → new_primDivNatS(new_primMinusNatS0(vuz4500), Zero)
The TRS R consists of the following rules:
new_primMinusNatS0(vuz4500) → Succ(vuz4500)
The set Q consists of the following terms:
new_primMinusNatS0(x0)
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
new_primDivNatS(Succ(Succ(vuz4500)), Zero) → new_primDivNatS(new_primMinusNatS0(vuz4500), Zero)
Strictly oriented rules of the TRS R:
new_primMinusNatS0(vuz4500) → Succ(vuz4500)
Used ordering: POLO with Polynomial interpretation [25]:
POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1 + x2   
POL(new_primMinusNatS0(x1)) = 2 + 2·x1   
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ RuleRemovalProof
                                            ↳ QDP
                                              ↳ PisEmptyProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:
new_primMinusNatS0(x0)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
new_primMinusNatS1 → Zero
new_primMinusNatS0(vuz4500) → Succ(vuz4500)
The set Q consists of the following terms:
new_primMinusNatS0(x0)
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS1
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS0(x0)
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS1
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS0(x0)
new_primMinusNatS1
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181)) at position [0] we obtained the following new rules:
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Rewriting
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(Succ(vuz180), Succ(vuz181)), Succ(vuz181)) at position [0] we obtained the following new rules:
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Zero) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
new_primDivNatS(Succ(Succ(vuz4500)), Succ(vuz31000)) → new_primDivNatS0(vuz4500, vuz31000, vuz4500, vuz31000)
new_primDivNatS00(vuz180, vuz181) → new_primDivNatS(new_primMinusNatS2(vuz180, vuz181), Succ(vuz181))
The remaining pairs can at least be oriented weakly.
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
Used ordering:  Polynomial interpretation [25]:
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1   
POL(new_primDivNatS0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primDivNatS00(x1, x2)) = 1 + x1   
POL(new_primMinusNatS2(x1, x2)) = x1   
The following usable rules [17] were oriented:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Zero, Zero) → new_primDivNatS00(vuz180, vuz181)
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
R is empty.
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primDivNatS0(vuz180, vuz181, Succ(vuz1820), Succ(vuz1830)) → new_primDivNatS0(vuz180, vuz181, vuz1820, vuz1830)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot0(vuz160, Succ(Succ(vuz17000)), Succ(vuz1620), vuz169) → new_quot(vuz160, vuz17000, Succ(vuz1620), vuz17000, vuz1620)
new_quot0(vuz160, Succ(Succ(vuz17000)), Zero, vuz169) → new_quot0(vuz160, new_primMinusNatS2(Succ(vuz17000), Zero), Zero, new_primMinusNatS2(Succ(vuz17000), Zero))
new_quot0(vuz160, Succ(Zero), Zero, vuz169) → new_quot0(vuz160, new_primMinusNatS2(Zero, Zero), Zero, new_primMinusNatS2(Zero, Zero))
new_quot(vuz213, vuz214, vuz215, Zero, Succ(vuz2170)) → new_quot1(vuz213, vuz215, Succ(vuz214))
new_quot2(vuz213, vuz214, vuz215) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Zero) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot1(vuz63, vuz640, vuz3100) → new_quot3(vuz63, vuz640, vuz3100)
new_quot0(vuz160, Succ(Zero), Succ(vuz1620), vuz169) → new_quot1(vuz160, Succ(vuz1620), Zero)
new_quot3(vuz63, vuz640, vuz3100) → new_quot3(vuz63, vuz640, vuz3100)
new_quot(vuz213, vuz214, vuz215, Zero, Zero) → new_quot2(vuz213, vuz214, vuz215)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 4 less nodes.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot3(vuz63, vuz640, vuz3100) → new_quot3(vuz63, vuz640, vuz3100)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                ↳ QDP
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot3(vuz63, vuz640, vuz3100) → new_quot3(vuz63, vuz640, vuz3100)
R is empty.
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ NonTerminationProof
                                ↳ QDP
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot3(vuz63, vuz640, vuz3100) → new_quot3(vuz63, vuz640, vuz3100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
new_quot3(vuz63, vuz640, vuz3100) → new_quot3(vuz63, vuz640, vuz3100)
The TRS R consists of the following rules:none
s = new_quot3(vuz63, vuz640, vuz3100) evaluates to  t =new_quot3(vuz63, vuz640, vuz3100)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
-  Semiunifier: [ ]
-  Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from new_quot3(vuz63, vuz640, vuz3100) to new_quot3(vuz63, vuz640, vuz3100).
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot0(vuz160, Succ(Succ(vuz17000)), Zero, vuz169) → new_quot0(vuz160, new_primMinusNatS2(Succ(vuz17000), Zero), Zero, new_primMinusNatS2(Succ(vuz17000), Zero))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot0(vuz160, Succ(Succ(vuz17000)), Zero, vuz169) → new_quot0(vuz160, new_primMinusNatS2(Succ(vuz17000), Zero), Zero, new_primMinusNatS2(Succ(vuz17000), Zero))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
new_quot0(vuz160, Succ(Succ(vuz17000)), Zero, vuz169) → new_quot0(vuz160, new_primMinusNatS2(Succ(vuz17000), Zero), Zero, new_primMinusNatS2(Succ(vuz17000), Zero))
Used ordering: POLO with Polynomial interpretation [25]:
POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primMinusNatS2(x1, x2)) = x1 + 2·x2   
POL(new_quot0(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                        ↳ QDP
                                          ↳ PisEmptyProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
P is empty.
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot0(vuz160, Succ(Succ(vuz17000)), Succ(vuz1620), vuz169) → new_quot(vuz160, vuz17000, Succ(vuz1620), vuz17000, vuz1620)
new_quot2(vuz213, vuz214, vuz215) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Zero) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Zero, Zero) → new_quot2(vuz213, vuz214, vuz215)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
new_quot0(vuz160, Succ(Succ(vuz17000)), Succ(vuz1620), vuz169) → new_quot(vuz160, vuz17000, Succ(vuz1620), vuz17000, vuz1620)
The remaining pairs can at least be oriented weakly.
new_quot2(vuz213, vuz214, vuz215) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Zero) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Zero, Zero) → new_quot2(vuz213, vuz214, vuz215)
Used ordering:  Polynomial interpretation [25]:
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primMinusNatS2(x1, x2)) = x1   
POL(new_quot(x1, x2, x3, x4, x5)) = 1 + x2 + x3   
POL(new_quot0(x1, x2, x3, x4)) = x2 + x3   
POL(new_quot2(x1, x2, x3)) = 1 + x2 + x3   
The following usable rules [17] were oriented:
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot2(vuz213, vuz214, vuz215) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Zero) → new_quot0(vuz213, new_primMinusNatS2(Succ(vuz214), vuz215), vuz215, new_primMinusNatS2(Succ(vuz214), vuz215))
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
new_quot(vuz213, vuz214, vuz215, Zero, Zero) → new_quot2(vuz213, vuz214, vuz215)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
R is empty.
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPSizeChangeProof
                          ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_quot(vuz213, vuz214, vuz215, Succ(vuz2160), Succ(vuz2170)) → new_quot(vuz213, vuz214, vuz215, vuz2160, vuz2170)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 > 4, 5 > 5
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot6(vuz146, Succ(Succ(vuz15800)), Succ(vuz1480), vuz157) → new_quot7(vuz146, vuz15800, Succ(vuz1480), vuz15800, vuz1480)
new_quot6(vuz146, Succ(Zero), Zero, vuz157) → new_quot6(vuz146, new_primMinusNatS2(Zero, Zero), Zero, new_primMinusNatS2(Zero, Zero))
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
new_quot6(vuz146, Succ(Succ(vuz15800)), Zero, vuz157) → new_quot6(vuz146, new_primMinusNatS2(Succ(vuz15800), Zero), Zero, new_primMinusNatS2(Succ(vuz15800), Zero))
new_quot8(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
new_quot4(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
new_quot7(vuz199, vuz200, vuz201, Zero, Succ(vuz2030)) → new_quot8(vuz199, vuz201, Succ(vuz200))
new_quot7(vuz199, vuz200, vuz201, Zero, Zero) → new_quot9(vuz199, vuz200, vuz201)
new_quot6(vuz146, Succ(Zero), Succ(vuz1480), vuz157) → new_quot8(vuz146, Succ(vuz1480), Zero)
new_quot9(vuz199, vuz200, vuz201) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
new_quot5(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Zero) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 5 less nodes.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                                ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot5(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                ↳ QDP
                                ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot5(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
R is empty.
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ NonTerminationProof
                                ↳ QDP
                                ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot5(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
new_quot5(vuz45, vuz460, vuz3100) → new_quot5(vuz45, vuz460, vuz3100)
The TRS R consists of the following rules:none
s = new_quot5(vuz45, vuz460, vuz3100) evaluates to  t =new_quot5(vuz45, vuz460, vuz3100)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
-  Semiunifier: [ ]
-  Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from new_quot5(vuz45, vuz460, vuz3100) to new_quot5(vuz45, vuz460, vuz3100).
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot6(vuz146, Succ(Succ(vuz15800)), Zero, vuz157) → new_quot6(vuz146, new_primMinusNatS2(Succ(vuz15800), Zero), Zero, new_primMinusNatS2(Succ(vuz15800), Zero))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                ↳ QDP
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot6(vuz146, Succ(Succ(vuz15800)), Zero, vuz157) → new_quot6(vuz146, new_primMinusNatS2(Succ(vuz15800), Zero), Zero, new_primMinusNatS2(Succ(vuz15800), Zero))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
new_quot6(vuz146, Succ(Succ(vuz15800)), Zero, vuz157) → new_quot6(vuz146, new_primMinusNatS2(Succ(vuz15800), Zero), Zero, new_primMinusNatS2(Succ(vuz15800), Zero))
Used ordering: POLO with Polynomial interpretation [25]:
POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primMinusNatS2(x1, x2)) = x1 + 2·x2   
POL(new_quot6(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                        ↳ QDP
                                          ↳ PisEmptyProof
                                ↳ QDP
                      ↳ Narrow
Q DP problem:
P is empty.
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
new_quot6(vuz146, Succ(Succ(vuz15800)), Succ(vuz1480), vuz157) → new_quot7(vuz146, vuz15800, Succ(vuz1480), vuz15800, vuz1480)
new_quot7(vuz199, vuz200, vuz201, Zero, Zero) → new_quot9(vuz199, vuz200, vuz201)
new_quot9(vuz199, vuz200, vuz201) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Zero) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
new_quot6(vuz146, Succ(Succ(vuz15800)), Succ(vuz1480), vuz157) → new_quot7(vuz146, vuz15800, Succ(vuz1480), vuz15800, vuz1480)
The remaining pairs can at least be oriented weakly.
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
new_quot7(vuz199, vuz200, vuz201, Zero, Zero) → new_quot9(vuz199, vuz200, vuz201)
new_quot9(vuz199, vuz200, vuz201) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Zero) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
Used ordering:  Polynomial interpretation [25]:
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primMinusNatS2(x1, x2)) = x1   
POL(new_quot6(x1, x2, x3, x4)) = x2   
POL(new_quot7(x1, x2, x3, x4, x5)) = 1 + x2   
POL(new_quot9(x1, x2, x3)) = 1 + x2   
The following usable rules [17] were oriented:
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
new_quot7(vuz199, vuz200, vuz201, Zero, Zero) → new_quot9(vuz199, vuz200, vuz201)
new_quot9(vuz199, vuz200, vuz201) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Zero) → new_quot6(vuz199, new_primMinusNatS2(Succ(vuz200), vuz201), vuz201, new_primMinusNatS2(Succ(vuz200), vuz201))
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
The TRS R consists of the following rules:
new_primMinusNatS2(Succ(vuz12700), Succ(vuz1280)) → new_primMinusNatS2(vuz12700, vuz1280)
new_primMinusNatS2(Zero, Succ(vuz1280)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuz12700), Zero) → Succ(vuz12700)
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
R is empty.
The set Q consists of the following terms:
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPSizeChangeProof
                      ↳ Narrow
Q DP problem:
The TRS P consists of the following rules:
new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_quot7(vuz199, vuz200, vuz201, Succ(vuz2020), Succ(vuz2030)) → new_quot7(vuz199, vuz200, vuz201, vuz2020, vuz2030)
 The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 > 4, 5 > 5
Haskell To QDPs